
1

Dependability and Machine Learning:
A Grand Challenge of the Times

Saurabh Bagchi
Purdue University

School of Electrical and Computer Engineering
Department of Computer Science

Director, Center for Resilient Infrastructures, Systems and
Processes (CRISP)

Director, Army Assured Autonomy Innovation Institute (A2I2)

2

Greetings come to you from …

3

Purdue Center for Resilient Infrastructures,
Systems, and Processes (CRISP) (2018-current)

Socio-TechnicalCyber-Physical

Cyber
35 faculty
ECE: 9, CS: 6,
Other engineering
departments: 20

4

• Army Research Lab: Assured Autonomy Innovation
Institute (2020-25)

+9 universities

5

Where It All Started

6

Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23

7

Problem Context
• Multi-domain operations in defense will involve autonomous operations

among multiple cyber, physical, and kinetic assets, together with interactions
with humans

• Such autonomous operation will rely on:
– A pipeline of machine learning (ML) algorithms

– Executing in real-time on

– A distributed set of heterogeneous platforms

• Conditions will be adversarial and operation must be guaranteed to be secure
while maintaining timeliness guarantees

– Security guarantees need to be carefully analyzed and proven, under well-quantified adversary
models

– Move away from one-off solution for specific attack type

• Different degrees of autonomy
– Some require humans in the loop; in such cases, the cognitive load of any software solution

must be analyzed for feasibility

– Some require humans on the loop

– Some are fully autonomous agents

8

Sample Autonomy Pipelines

• Multiple ML algorithms in a pipeline
– Different resource requirements, different input-output patterns

– Can be required to execute on vastly different platforms

9

Aspects of Resilience of Autonomous Systems
Resilience by design:
Designs & develops autonomous
systems so that they are resilient to a
large set of quantifiable perturbations

Resilience by reaction:
Works at runtime when perturbations
are incident on the autonomous
system and imbues the systems with
the ability to “bounce back” quickly
after a failure triggered by a
perturbation

A truly assured autonomous system has:
1. Close interactions during design and

execution of the two aspects
2. Resilience by reaction principles are
learned and become part of resilience by

design

S. Bagchi, V. Aggarwal, S. Chaterji, F. Douglis, A. Gamal, J. Han, B.J. Henz, H. Hoffmann, S. Jana, M. Kulkarni, F.X.
Lin, K. Marais, P. Mittal, S. Mou, X. Qiu, and G. Scutari, "Vision Paper: Grand Challenges in Resilience: Autonomous
System Resilience through Design and Runtime Measures," in IEEE Open Journal of the Computer Society (OJCS), pp.
1-15, 2020.

10

Testbed for Evaluation of Assured Autonomy Protocols

Low-end
embedded

devices

Higher end
sensor-actuator

devices

Wearables

Sensor 
Edge  Cloud

Purdue campus-
wide deployment
of mesh network

The integrated testbed is network accessible
and programmable, ready for controlled

experimentation of assured autonomy
algorithms

11

Requirements for Assured Autonomy

1. ML algorithms must be capable of
– Executing on a distributed set of execution platforms (mobile

nodes, ground-based or aerial sensors, edge computing nodes,
private cloud nodes, etc.)

– Trained both offline and in the field

– Tolerating varying amounts of noise either due to naturally
occurring causes or due to maliciously injected errors

2. Autonomous algorithms must interface well with
humans who may need to act on their decisions
– Interpretable and explainable at the tactical level in real time

– Interpretable and explainable at the strategic level so that a
leader may make modifications for future missions

12

Requirements

3. Probabilistic guarantees
– On accuracy and latency

– Guarantees must hold under adversarial actions

– Guarantees must hold under batch mode and incremental training

4. Algorithms must be able to ingest heterogeneous sources of
data
– Data sources will vary in their fidelity, rate, and characteristic

– These data sources will be intermixed coming from white, blue,
and red networks

– In the process of inferencing, the algorithms also tag data sources
with their trust level, so that future decision making becomes
more accurate

13

Roadmap

• Dependability across the stack
– Networks of wireless embedded devices

– Wearables and mobiles

– Clusters of edge devices

– Autonomous systems

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

1. Problem context
2. Domain-specific

requirements
3. Application of

data analytics

14

Dependability Basic
System provides intended functionality despite

Natural errors Security errors

Unexpected interactions

Workflow for achieving dependability (Simplistic)

Prevent Detect

Contain

Diagnose

Repair

15

Dependability Trends

• Dependability driven by 2 emerging trends

1. Execution environments are changing
– FROM: All components have perfect visibility and

controllability and run on homogeneous nodes

– TO: Systems are made up of third‐party software components
and run on heterogeneous nodes and networks

2. Solutions are dynamic and adaptable
– FROM: Rule-based, always on, not adaptive to dynamic

workloads or system conditions

– TO: Data-driven solutions that can change with workload,
system conditions, and architecture

16

Dependability Trends: Examples

1. Execution environments are changing

17

Dependability Trends: Examples

2. Static to dynamic

CPU load > 80%
OR

Memory occupancy > 90%
 Migrate VM to different

machine

[NeurIPS-20]

18

Framing of Dependability across the Stack

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

•What is the unique
problem context for
each level?

•What are the
domain‐specific
requirements?

•Examples of early
promise of data
analytics for
dependability

19

Our Problem Contexts for Dependability

Wearable and mobile devices

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

• New failure modes for
wearables

• New software design patterns
for wearable software

• Crowdsensing of information
through mobile sensors

Problem Context
• Reliability from
unreliable
components

• Unobtrusive to
human users

Requirements

• Understand patterns
of human interactions
[Reiter‐UsenixSec21]

• Prevent privacy leak
[Provost‐AAAI20, Wang‐
ICDE19]

• Reliable inference
through unreliable
crowdsensed data
[Abdelzaher‐IoTJ22, Bagchi‐
EWSN20]

Application of Data
Analytics

20

Our Problem Contexts for Dependability

Clusters of edge computing devices

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

• Edge capacity is not fully elastic
• Individual edge device
availability is highly variable

• Large geographic scale
• Large numbers of
heterogeneous client devices

Problem Context
• Low latency
• Both unmanaged
and managed edge
devices

Requirements

• Approximation of
demanding streaming ML
algorithms [Cui‐VLDB20,
E2train‐NeurIPS19]

• Hybrid offloading
between cloud, edge, and
client for reliability [Bagchi‐
CACM20, Bagchi‐SRDS22]

• Streaming inference under
adversaries [Yogev‐JACM22,

Zhou‐NeurIPS21]

Application of Data
Analytics

21

Our Problem Contexts for Dependability

Distributed autonomous systems

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

• Secure distributed execution of
ML codes on heterogeneous
platforms

• Tolerating adversarial samples
(video, social networks, …)

• Ensemble of models of varying
trust

Problem Context
• Many models are
black box

• Noisy data sources
• Unreliable
execution platforms

Requirements

• Adversarial example
detection [Urtasun‐
CVPR20, Liu‐NDSS19]

• Distributed situational
awareness [Popa‐
UsenixSec21, Bagchi‐AsiaCC23]

• Protecting against model
and data poisoning [Gong‐
UsenixSec21, Houmansadr‐
S&P22]

Solution Directions

22

Two Styles of Dependability

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

Dependability by
Design

Dependability by
Reaction

23

Two Styles of Dependability

Dependability by
Design

Dependability by
Reaction

 𝑣௦ 𝑣௦ 𝑣ଷ 𝑣ଷ

 𝑣ଵ 𝑣ଵ

 𝑣ଶ 𝑣ଶ

 𝑣௧ 𝑣௧

Where to put security protections in a large-scale critical
infrastructure system? [Bagchi-S&P22, Bagchi-WSJ22]

1. Learn the min-cut edge set in the
attack graph

2. Invest in security protections on all
edges in that set

3. Learn the appropriate level of
investment on each edge

24

Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23

Federated Learning: Background
▪ Client nodes

communicate only with
the server and not with
each other.

▪ Clients only share their
local model updates
while the data remains
private.

▪ Server aggregates the
local model updates to
update the global
model, which is sent
back to the clients.

25

Global server

Cn-1

Dn-1

...
C2

D2

C1

D1

C0

D0

local_gradsi(t+1) = 𝝯fi(x(t), Di)

x(t) = A(x(t-1), local_grads(t))

FL Vulnerabilities

▪ A malicious client can
send faulty gradients
to the server to throw it
off from converging at
the optima.

▪ The server is trusted
to perform Byzantine-
robust aggregation.

26

Global server

Cm-1
Dm-

1

...
C2

D2

C1

D1

C0

D0

Data Poisoning vs Model Poisoning: Model
poisoning attacks are more potent than data
poisoning attacks.

Targeted vs Untargeted Attacks: Untargeted
attacks affect all data samples and can cause
more extensive damage compared to targeted
attacks, which focus on specific data samples.

Directed Deviation Attack:
SOTA Attack in FL

27

1. Gradient Manipulation: Attackers send gradient updates deviating from the
local optima to throw off the system from learning an accurate global model.
2. Optima Estimation: Attackers estimate local optima direction using benign
gradients, the accuracy of which depends on the threat model.
3. Threat Model Dependence: Precision of optima estimation varies with threat
model - higher in white-box scenarios, lower in black-box scenarios.

FL attack: Threat model

28

1. Compromised Nodes: Assume c out of m nodes
are compromised by an adversary, enabling them to
send malicious gradient updates.
2. Access to Benign Gradients: The adversary has
access to the benign gradients of the compromised
nodes in each learning round.
3. Knowledge of Aggregation: The adversary is
aware of the aggregation technique used by the server.

29

What Does Dependability Have To Do With This?
• Predictability is an attribute of dependability

– Performance predictability

– Cost predictability

• For systems requiring (probabilistic) latency guarantees
– Failure to meet guarantee is a blow to dependability

– May have financial impact or even safety impact

Crash
Omission

Incorrect
Computation

Timing

Byzantine
(malicious)

A process
stops prematurely
and does nothing
from that point on

A process
response

is functionally
correct but
untimely

A process stops
prematurely or
intermittently
omits to send/

receive messages

A process
responds
incorrectly:

either output
or the state
transition is

incorrect

A process
behaves

randomly or
arbitrarily

FL Directed Deviation Attack

30

Fang Attack [USENIX Sec ‘20]: Computes a direction vector along the
inverse of the average benign direction.

- Krum Attack: This attack ensures all malicious models are close to
each other with small mutual distance, fooling the Krum aggregator to
choose the poisoned model.

- Trim Attack: This attack samples model updates per parameter in a
way that skews the distribution toward the malicious direction.
Shejwalkar Attack [NDSS ‘21]: Computes a perturbation (inverse unit)
vector and scales it up before adding to the benign updates. The scaling
factor is tuned depending on the dataset and the model used.

31

How Bad Does It Get With the Attack?

3
1

FLAIR: Key defense idea

32

1. Smooth Loss Landscape: FLAIR assumes a
learning task with a smooth loss landscape around
the current state of the model.
2. Small Learning Rate: A well-chosen small
learning rate should ensure that a large number of
parameter gradients do not flip their direction with
large magnitudes in a benign setting.
3. Gradient Inertia: The model maintains some
degree of inertia in the parameter gradients,
meaning that large changes in direction are unusual.
4. Detecting Attacks: Large collective flips in some
gradient vectors are indicative of an attack.

FL with FLAIR Aggregation

33

FLAIR: Key Defense Idea

34

Detecting malicious updates from the flip-
score

Macro Results

35

FLAIR is among the top-2 performers across datasets and attack types

Macro Results

36

Open Problem – Security in P2PL

37

1. Decentralized Learning: Clients collaborate

among themselves without relying on a single server.

2. Dissensus Problem: Without central coordination

of the learning process, there can be disagreements

among nodes about state of the global model slowing

down learning

3. Difficult Detection of Malicious Activity: Each

node only has a limited view of the network, making

it harder to identify malicious activity.

4. Increased Vulnerability to Attacks: An adversary
could potentially compromise multiple nodes and use
them to introduce malicious updates.

Takeaways

▪ FLAIR is a secure parameter server for federated learning,
robust to any untargeted model poisoning attack.

▪ We define malicious behavior using a metric, flip-score,
which when too high or too low, captures attacks that try to
divert the global model away from convergence.

▪ FLAIR uses a stateful algorithm to allocate reputation
scores to the participating clients to lower the contribution of
maliciously behaving clients.

▪ We evaluate the benefits of FLAIR compared to the
fundamental FL aggregation FedSGD and state-of-the-art
defenses, Krum, Bulyan, FABA, FoolsGold, and FLTrust.

▪ FLAIR is robust even against a full knowledge untargeted
model poisoning adversary that were recently found to be
most damaging against FL.

38

39

Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23

40

Federated learning (FL) for privacy preservation

● Federated learning was introduced as a privacy-
preserving technology to allow decentralized training
of models on client data
○ Mobile devices can train models now (computational power)

■ Model training updates can be computed by clients

○ Only the updates (gradients) need to be sent to the server

41

FL privacy attack - data leakage

● “Privacy is enhanced by the
ephemeral and focused nature of
the [Federated Learning]
updates.” [1]

● Privacy-preservation premise of
FL holds only if the client
updates cannot be used to
recover information about the
data.
○ Strongest FL privacy attacks are data

leakage/reconstruction attacks

42

FedAVG and Secure aggregation (SA): Difficult to
Attack, but are they Privacy Preserving?

● FedSGD vs. FedAVG
○ FedSGD: clients have a single

training iteration before sending the
update to server

○ FedAVG: clients have multiple local
training iterations/epochs before
sending the update to server
■ Server cannot see intermediate model

updates, only the initial and final state

● Secure aggregation (SA)
○ Server can only see the aggregated

model update for all clients

The combination of FedAVG + SA is
particularly difficult to attack.

43

Basic Idea of Linear Layer Leakage for
Data Reconstruction

● Inputs to a fully-connected (linear) layer can be directly leaked
through the gradients of the layer. This can be the input images if
layer placed at the start.

● This requires a single input image to activate a neuron in the layer
○ If multiple images activate a single neuron, the reconstructions fail

● Robbing the Fed1 (RtF) built upon this idea and proposed a more
efficient linear layer leakage approach
○ Higher leakage rate

○ Better scalability (batch size/secure aggregation)

1Fowl et. al., “Robbing the Fed: Directly Obtaining
Private Data in Federated Learning with Modified
Models”. ICLR, 2022.

44

Problems with Linear Layer Leakage Scalability

● As the total number of input images increases, the size of the FC
layer must increase to accommodate this, as multiple image
activations per neuron results in reconstruction failure.
○ Batch size 64, 1 client, 256 FC layer size. On average 4 neurons per

image avoids collision.
○ With 100 clients instead, there is on average 25 images per neuron.

● Model size overhead becomes very large as the FC layer
increases in size.

● Weight scaling in FedAVG causes precision problems with
large FC layer.
○ Leakage rate decreases and reconstructed images become much lower

quality

45

LOKI: Convolutional Layer Prior to FC Layers to Split
Scaling

● Convolutional layer
placed in front of FC
leakage layers.

● Use “identity mapping
sets” to push the input
image to the FC layer.
○ First three kernels of the

convolutional layer
propagate image forward
exactly as it is.

● Clients are sent different
identity mapping sets

● Split scaling:
○ Increase the number of convolutional

kernels based on number of clients
○ Increase FC layer size based on local

dataset size/batch size

46

LOKI: Scalable Leakage for FedAVG and SA

47

Data Reconstruction Examples for LOKI

48

Leakage Rate and Scalability in FedAVG

49

Model Size Reduction through Sparsity

50

Takeaways

● In Federated Learning, even secure aggregation in FedAVG
cannot preserve privacy of client data.

● Our attack LOKI: Malicious server sends customized models to
clients.

● Key design idea: Send customized convolutional kernels to each
client, an identity mapping set, that separates the weight
gradients from the clients despite the use of secure aggregation.

● The server then uses these weight gradients to reconstruct the
original data points.

● We are the first to achieve a privacy attack in FL with FedAVG
that scales well with the size of the local dataset and the number
of clients.

51

Open Problems for Security in ML

• How to handle data dependent behavior
– Control flow may be affected by content of request

– What is benign and what is malicious may change based on this
data dependence

• How to refresh models for detection or identification
– When workload changes or for an adaptive attacker

– Model update incrementally through online learning

– How to leverage sparse human input

• How to secure peer-to-peer learning
– Particularly vulnerable to well-placed adversary nodes

– Can we take advantage of “wisdom of the crowds”

52

Principles for Data Analytics in Dependable
Design

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

1.Design for flexible migration of
application logic across three platforms

2.Design for fast fail over and simple
recovery logic

3.Careful introduction of visibility into parts
of black-box models

4.Learn from secure distributed execution
work of traditional software

1.Carefully orchestrate interactions among
software components

2.Handle sensor and physical space interactions
3.Design with unpredictable availability as first

order assumption
4.Design with fewer isolation assumptions

Data Analytics can help
1. Only in some cases

2. Model must be simple

3. Model inference and search overheads must be considered

4. White box nature is often a desired element

5. Model must be adaptable to dynamic conditions

53

How You Can Get Involved?

1. Visit us at Purdue’s Assured Autonomy Innovation
Institute (A2I2)

– BTech/MTech students as 2-month interns (remote)

– PhD students, Post-doctoral scholars, Faculty

– Anywhere from 1-9 months possible

– Immigration paperwork and local arrangements handled by
our Institute staff

2. Jointly pursue funding with NSF and DST
– For organizing workshops

– For researcher visits

3. Co-author perspective articles that will go on to define
topics within ML and dependability

54

It Takes a Village
• Purdue: [Faculty] Qiang Qiu, Murat Kocaoglu, Somali Chaterji [Students] Atul Sharma,

Joshua Zhao, Wei Chen

• Wisconsin Madison: Yin Li

• EPFL: Mathias Payer

• USC: Ramesh Govindan, Salman Avestimehr

• Illinois: Tarek Abdelzaher

• ETH: Ana Klimovic

• Microsoft Research: Sameh Elnikety

• Army Research Lab: Noah Weston, Brian Henz, Priya Narayanan, Dan Cassenti

• Adobe Labs: Vishy Swaminathan Haoliang Wang, Subrata Mitra

• Google (Infrastructure Team): Rama Govindaraju, Liqun Cheng

55

Thanks To

CPS, SaTC, CCRI, SPX

NIAID (R01) Army Research Lab
A2I2 Institute

Faculty Award

56

Backup

57

Our Problem Contexts for Dependability

Networks of wireless embedded devices

Low-end
embedded

devices

Wearable &
Mobile

Clusters of
edge devices

Data Center
clusters

Autonomous
systems

• Placed in physically hazardous
environments

• Little or no OS, little hardware
support for dependability

• Application software assumes
root privileges

• Code deeply interconnected
with peripherals

Problem Context
• Very lightweight
instrumentation

• Meet soft real‐time
requirements

Requirements

• Analyze inter‐component
interactions [Bagchi‐

UsenixSec18, uXOM‐UsenixSec19]

• Emulate binary blob
firmware [Avatar‐NDSS20,
Bagchi‐UsenixSec20, P2IM‐
UsenixSec20]

• Time series anomaly
detection [Rabanser‐NeurIPS19,
Bagchi‐NeurIPS20]

Application of Data
Analytics

