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Greetings come to you from …
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Purdue Center for Resilient Infrastructures, 
Systems, and Processes (CRISP) (2018-current)

Socio-TechnicalCyber-Physical

Cyber
35 faculty
ECE: 9, CS: 6, 
Other engineering 
departments: 20
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• Army Research Lab: Assured Autonomy Innovation 
Institute (2020-25)

+9 universities
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Where It All Started
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Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23
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Problem Context
• Multi-domain operations in defense will involve autonomous operations

among multiple cyber, physical, and kinetic assets, together with interactions 
with humans

• Such autonomous operation will rely on:
– A pipeline of machine learning (ML) algorithms

– Executing in real-time on

– A distributed set of heterogeneous platforms

• Conditions will be adversarial and operation must be guaranteed to be secure 
while maintaining timeliness guarantees

– Security guarantees need to be carefully analyzed and proven, under well-quantified adversary 
models

– Move away from one-off solution for specific attack type

• Different degrees of autonomy
– Some require humans in the loop; in such cases, the cognitive load of any software solution 

must be analyzed for feasibility

– Some require humans on the loop

– Some are fully autonomous agents
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Sample Autonomy Pipelines

• Multiple ML algorithms in a pipeline
– Different resource requirements, different input-output patterns

– Can be required to execute on vastly different platforms
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Aspects of Resilience of Autonomous Systems
Resilience by design:
Designs & develops autonomous 
systems so that they are resilient to a 
large set of quantifiable perturbations

Resilience by reaction:
Works at runtime when  perturbations 
are incident on the autonomous 
system and imbues the systems with 
the ability to “bounce back” quickly 
after a failure triggered by a 
perturbation

A truly assured autonomous system has:
1. Close interactions during design and 

execution of the two aspects
2. Resilience by reaction principles are 
learned and become part of resilience by 

design

S. Bagchi, V. Aggarwal, S. Chaterji, F. Douglis, A. Gamal, J. Han, B.J. Henz, H. Hoffmann, S. Jana, M. Kulkarni, F.X. 
Lin, K. Marais, P. Mittal, S. Mou, X. Qiu, and G. Scutari, "Vision Paper: Grand Challenges in Resilience: Autonomous 
System Resilience through Design and Runtime Measures," in IEEE Open Journal of the Computer Society (OJCS), pp. 
1-15, 2020.
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Testbed for Evaluation of Assured Autonomy Protocols

Low-end 
embedded 

devices

Higher end 
sensor-actuator 

devices

Wearables

Sensor 
Edge  Cloud

Purdue campus-
wide deployment 
of mesh network

The integrated testbed is network accessible 
and programmable, ready for controlled 

experimentation of assured autonomy 
algorithms
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Requirements for Assured Autonomy

1. ML algorithms must be capable of
– Executing on a distributed set of execution platforms (mobile 

nodes, ground-based or aerial sensors, edge computing nodes, 
private cloud nodes, etc.) 

– Trained both offline and in the field

– Tolerating varying amounts of noise either due to naturally 
occurring causes or due to maliciously injected errors

2. Autonomous algorithms must interface well with 
humans who may need to act on their decisions
– Interpretable and explainable at the tactical level in real time

– Interpretable and explainable at the strategic level so that a 
leader may make modifications for future missions
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Requirements

3. Probabilistic guarantees 
– On accuracy and latency

– Guarantees must hold under adversarial actions

– Guarantees must hold under batch mode and incremental training

4. Algorithms must be able to ingest heterogeneous sources of 
data
– Data sources will vary in their fidelity, rate, and characteristic

– These data sources will be intermixed coming from white, blue, 
and red networks

– In the process of inferencing, the algorithms also tag data sources 
with their trust level, so that future decision making becomes 
more accurate
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Roadmap

• Dependability across the stack
– Networks of wireless embedded devices

– Wearables and mobiles

– Clusters of edge devices

– Autonomous systems

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

1. Problem context
2. Domain-specific 

requirements
3. Application of 

data analytics
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Dependability Basic
System provides intended functionality despite

Natural errors Security errors

Unexpected interactions

Workflow for achieving dependability (Simplistic)

Prevent Detect

Contain

Diagnose

Repair
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Dependability Trends

• Dependability driven by 2 emerging trends

1. Execution environments are changing
– FROM: All components have perfect visibility and 

controllability and run on homogeneous nodes

– TO: Systems are made up of third‐party software components 
and run on heterogeneous nodes and networks

2. Solutions are dynamic and adaptable
– FROM: Rule-based, always on, not adaptive to dynamic 

workloads or system conditions

– TO: Data-driven solutions that can change with workload, 
system conditions, and architecture
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Dependability Trends: Examples

1. Execution environments are changing



17

Dependability Trends: Examples

2. Static to dynamic

CPU load > 80% 
OR 

Memory occupancy > 90%
 Migrate VM to different 

machine

[NeurIPS-20]
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Framing of Dependability across the Stack

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

•What is the unique
problem context for 
each level?

•What are the 
domain‐specific 
requirements?

•Examples of early 
promise of data 
analytics for 
dependability
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Our Problem Contexts for Dependability

Wearable and mobile devices

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

• New failure modes for 
wearables

• New software design patterns 
for wearable software

• Crowdsensing of information 
through mobile sensors

Problem Context
• Reliability from 
unreliable 
components

• Unobtrusive to 
human users

Requirements

• Understand patterns 
of human interactions 
[Reiter‐UsenixSec21]

• Prevent privacy leak 
[Provost‐AAAI20, Wang‐
ICDE19]

• Reliable inference 
through unreliable 
crowdsensed data 
[Abdelzaher‐IoTJ22, Bagchi‐
EWSN20]

Application of Data 
Analytics
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Our Problem Contexts for Dependability

Clusters of edge computing devices

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

• Edge capacity is not fully elastic
• Individual edge device 
availability is highly variable

• Large geographic scale
• Large numbers of 
heterogeneous client devices

Problem Context
• Low latency
• Both unmanaged 
and managed edge 
devices

Requirements

• Approximation of 
demanding streaming ML 
algorithms [Cui‐VLDB20, 
E2train‐NeurIPS19]

• Hybrid offloading 
between cloud, edge, and 
client for reliability [Bagchi‐
CACM20, Bagchi‐SRDS22]

• Streaming inference under 
adversaries [Yogev‐JACM22, 

Zhou‐NeurIPS21]

Application of Data 
Analytics
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Our Problem Contexts for Dependability

Distributed autonomous systems

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

• Secure distributed execution of 
ML codes on heterogeneous 
platforms

• Tolerating adversarial samples 
(video, social networks, …)

• Ensemble of models of varying 
trust

Problem Context
• Many models are 
black box

• Noisy data sources
• Unreliable 
execution platforms

Requirements

• Adversarial example 
detection [Urtasun‐
CVPR20, Liu‐NDSS19]

• Distributed situational 
awareness [Popa‐
UsenixSec21, Bagchi‐AsiaCC23]

• Protecting against model 
and data poisoning [Gong‐
UsenixSec21, Houmansadr‐
S&P22]

Solution Directions
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Two Styles of Dependability

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

Dependability by 
Design

Dependability by 
Reaction
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Two Styles of Dependability

Dependability by 
Design

Dependability by 
Reaction

 𝑣 𝑣  𝑣 𝑣

 𝑣 𝑣

 𝑣 𝑣
 𝑣 𝑣

Where to put security protections in a large-scale critical 
infrastructure system? [Bagchi-S&P22, Bagchi-WSJ22]

1. Learn the min-cut edge set in the 
attack graph

2. Invest in security protections on all
edges in that set

3. Learn the appropriate level of 
investment on each edge
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Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23



Federated Learning: Background
▪ Client nodes 

communicate only with 
the server and not with 
each other.

▪ Clients only share their 
local model updates 
while the data remains 
private.

▪ Server aggregates the 
local model updates to 
update the global 
model, which is sent 
back to the clients.
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Global server

Cn-1

Dn-1

...
C2

D2

C1

D1

C0

D0

local_gradsi(t+1) = 𝝯fi(x(t), Di)

x(t) = A(x(t-1), local_grads(t))

FL Vulnerabilities

▪ A malicious client can 
send faulty gradients 
to the server to throw it 
off from converging at 
the optima.

▪ The server is trusted 
to perform Byzantine-
robust aggregation.
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Global server

Cm-1
Dm-

1

...
C2

D2

C1

D1

C0

D0

Data Poisoning vs Model Poisoning: Model 
poisoning attacks are more potent than data 
poisoning attacks.

Targeted vs Untargeted Attacks: Untargeted 
attacks affect all data samples and can cause 
more extensive damage compared to targeted 
attacks, which focus on specific data samples.



Directed Deviation Attack: 
SOTA Attack in FL 
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1. Gradient Manipulation: Attackers send gradient updates deviating from the 
local optima to throw off the system from learning an accurate global model. 
2. Optima Estimation: Attackers estimate local optima direction using benign 
gradients, the accuracy of which depends on the threat model.
3. Threat Model Dependence: Precision of optima estimation varies with threat 
model - higher in white-box scenarios, lower in black-box scenarios.

FL attack: Threat model
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1. Compromised Nodes: Assume c out of m nodes 
are compromised by an adversary, enabling them to 
send malicious gradient updates.
2. Access to Benign Gradients: The adversary has 
access to the benign gradients of the compromised 
nodes in each learning round.
3. Knowledge of Aggregation: The adversary is 
aware of the aggregation technique used by the server.
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What Does Dependability Have To Do With This?
• Predictability is an attribute of dependability

– Performance predictability

– Cost predictability

• For systems requiring (probabilistic) latency guarantees
– Failure to meet guarantee is a blow to dependability

– May have financial impact or even safety impact

Crash
Omission

Incorrect 
Computation

Timing

Byzantine
(malicious)

A process 
stops prematurely 
and does nothing 
from that point on

A process 
response 

is functionally 
correct but 
untimely 

A process stops 
prematurely or 
intermittently 
omits to send/

receive messages

A process 
responds 
incorrectly:

either output 
or the state 
transition is

incorrect

A process 
behaves 

randomly or
arbitrarily 

FL Directed Deviation Attack
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Fang Attack [USENIX Sec ‘20]: Computes a direction vector along the 
inverse of the average benign direction.

- Krum Attack: This attack ensures all malicious models are close to 
each other with small mutual distance, fooling the Krum aggregator to 
choose the poisoned model.

- Trim Attack: This attack samples model updates per parameter in a 
way that skews the distribution toward the malicious direction.
Shejwalkar Attack [NDSS ‘21]: Computes a perturbation (inverse unit) 
vector and scales it up before adding to the benign updates. The scaling 
factor is tuned depending on the dataset and the model used.
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How Bad Does It Get With the Attack?

3
1

FLAIR: Key defense idea
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1. Smooth Loss Landscape: FLAIR assumes a 
learning task with a smooth loss landscape around 
the current state of the model. 
2. Small Learning Rate: A well-chosen small 
learning rate should ensure that a large number of 
parameter gradients do not flip their direction with 
large magnitudes in a benign setting.
3. Gradient Inertia: The model maintains some 
degree of inertia in the parameter gradients, 
meaning that large changes in direction are unusual.
4. Detecting Attacks: Large collective flips in some 
gradient vectors are indicative of an attack. 



FL with FLAIR Aggregation
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FLAIR: Key Defense Idea 
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Detecting malicious updates from the flip-
score



Macro Results
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FLAIR is among the top-2 performers across datasets and attack types

Macro Results

36



Open Problem – Security in P2PL
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1. Decentralized Learning: Clients collaborate 

among themselves without relying on a single server.

2. Dissensus Problem: Without central coordination 

of the learning process, there can be disagreements 

among nodes about state of the global model slowing 

down learning

3. Difficult Detection of Malicious Activity: Each 

node only has a limited view of the network, making 

it harder to identify malicious activity.

4. Increased Vulnerability to Attacks: An adversary 
could potentially compromise multiple nodes and use 
them to introduce malicious updates. 

Takeaways

▪ FLAIR is a secure parameter server for federated learning, 
robust to any untargeted model poisoning attack. 

▪ We define malicious behavior using a metric, flip-score, 
which when too high or too low, captures attacks that try to 
divert the global model away from convergence. 

▪ FLAIR uses a stateful algorithm to allocate reputation 
scores to the participating clients to lower the contribution of 
maliciously behaving clients.

▪ We evaluate the benefits of FLAIR compared to the 
fundamental FL aggregation FedSGD and state-of-the-art  
defenses, Krum, Bulyan, FABA, FoolsGold, and FLTrust. 

▪ FLAIR is robust even against a full knowledge untargeted 
model poisoning adversary that were recently found to be 
most damaging against FL.

38
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Roadmap

• Dependability across the stack

• Security in Federated Learning: [AsiaCCS-23, DSN-23]

• Privacy in Federated Learning: [CVPR-23, S&P-24]

• Takeaways and Open Problems

Fun tech quiz:
https://bit.ly/sbquiz23
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Federated learning (FL) for privacy preservation

● Federated learning was introduced as a privacy-
preserving technology to allow decentralized training 
of models on client data
○ Mobile devices can train models now (computational power)

■ Model training updates can be computed by clients

○ Only the updates (gradients) need to be sent to the server
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FL privacy attack - data leakage

● “Privacy is enhanced by the 
ephemeral and focused nature of 
the [Federated Learning] 
updates.” [1]

● Privacy-preservation premise of 
FL holds only if the client 
updates cannot be used to 
recover information about the 
data.
○ Strongest FL privacy attacks are data 

leakage/reconstruction attacks
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FedAVG and Secure aggregation (SA): Difficult to 
Attack, but are they Privacy Preserving?

● FedSGD vs. FedAVG
○ FedSGD: clients have a single 

training iteration before sending the 
update to server

○ FedAVG: clients have multiple local 
training iterations/epochs before 
sending the update to server
■ Server cannot see intermediate model 

updates, only the initial and final state

● Secure aggregation (SA)
○ Server can only see the aggregated 

model update for all clients

The combination of FedAVG + SA is 
particularly difficult to attack.
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Basic Idea of Linear Layer Leakage for 
Data Reconstruction

● Inputs to a fully-connected (linear) layer can be directly leaked 
through the gradients of the layer. This can be the input images if 
layer placed at the start.

● This requires a single input image to activate a neuron in the layer
○ If multiple images activate a single neuron, the reconstructions fail

● Robbing the Fed1 (RtF) built upon this idea and proposed a more 
efficient linear layer leakage approach
○ Higher leakage rate

○ Better scalability (batch size/secure aggregation)

1Fowl et. al., “Robbing the Fed: Directly Obtaining 
Private Data in Federated Learning with Modified 
Models”. ICLR, 2022.
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Problems with Linear Layer Leakage Scalability

● As the total number of input images increases, the size of the FC 
layer must increase to accommodate this, as multiple image 
activations per neuron results in reconstruction failure.
○ Batch size 64, 1 client, 256 FC layer size. On average 4 neurons per 

image avoids collision. 
○ With 100 clients instead, there is on average 25 images per neuron.

● Model size overhead becomes very large as the FC layer 
increases in size.

● Weight scaling in FedAVG causes precision problems with 
large FC layer.
○ Leakage rate decreases and reconstructed images become much lower 

quality
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LOKI: Convolutional Layer Prior to FC Layers to Split 
Scaling

● Convolutional layer 
placed in front of FC 
leakage layers.

● Use “identity mapping 
sets” to push the input 
image to the FC layer.
○ First three kernels of the 

convolutional layer 
propagate image forward 
exactly as it is.

● Clients are sent different
identity mapping sets

● Split scaling:
○ Increase the number of convolutional 

kernels based on number of clients
○ Increase FC layer size based on local 

dataset size/batch size
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LOKI: Scalable Leakage for FedAVG and SA



47

Data Reconstruction Examples for LOKI
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Leakage Rate and Scalability in FedAVG
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Model Size Reduction through Sparsity
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Takeaways

● In Federated Learning, even secure aggregation in FedAVG
cannot preserve privacy of client data.

● Our attack LOKI: Malicious server sends customized models to 
clients. 

● Key design idea: Send customized convolutional kernels to each 
client, an identity mapping set, that separates the weight 
gradients from the clients despite the use of secure aggregation.

● The server then uses these weight gradients to reconstruct the 
original data points. 

● We are the first to achieve a privacy attack in FL with FedAVG
that scales well with the size of the local dataset and the number 
of clients.
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Open Problems for Security in ML

• How to handle data dependent behavior
– Control flow may be affected by content of request

– What is benign and what is malicious may change based on this 
data dependence

• How to refresh models for detection or identification 
– When workload changes or for an adaptive attacker

– Model update incrementally through online learning

– How to leverage sparse human input

• How to secure peer-to-peer learning
– Particularly vulnerable to well-placed adversary nodes

– Can we take advantage of “wisdom of the crowds”
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Principles for Data Analytics in Dependable 
Design 

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

1.Design for flexible migration of 
application logic across three platforms

2.Design for fast fail over and simple 
recovery logic

3.Careful introduction of visibility into parts 
of black-box models

4.Learn from secure distributed execution 
work of traditional software

1.Carefully orchestrate interactions among 
software components

2.Handle sensor and physical space interactions
3.Design with unpredictable availability as first 

order assumption
4.Design with fewer isolation assumptions

Data Analytics can help
1. Only in some cases

2. Model must be simple

3. Model inference and search overheads must be considered

4. White box nature is often a desired element

5. Model must be adaptable to dynamic conditions
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How You Can Get Involved?

1. Visit us at Purdue’s Assured Autonomy Innovation 
Institute (A2I2)

– BTech/MTech students as 2-month interns (remote)

– PhD students, Post-doctoral scholars, Faculty

– Anywhere from 1-9 months possible

– Immigration paperwork and local arrangements handled by 
our Institute staff

2. Jointly pursue funding with NSF and DST
– For organizing workshops

– For researcher visits

3. Co-author perspective articles that will go on to define 
topics within ML and dependability
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It Takes a Village
• Purdue: [Faculty] Qiang Qiu, Murat Kocaoglu, Somali Chaterji [Students] Atul Sharma, 

Joshua Zhao, Wei Chen

• Wisconsin Madison: Yin Li

• EPFL: Mathias Payer

• USC: Ramesh Govindan, Salman Avestimehr

• Illinois: Tarek Abdelzaher

• ETH: Ana Klimovic

• Microsoft Research: Sameh Elnikety

• Army Research Lab: Noah Weston, Brian Henz, Priya Narayanan, Dan Cassenti

• Adobe Labs: Vishy Swaminathan Haoliang Wang, Subrata Mitra

• Google (Infrastructure Team): Rama Govindaraju, Liqun Cheng
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Thanks To

CPS, SaTC, CCRI, SPX

NIAID (R01) Army Research Lab 
A2I2 Institute

Faculty Award
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Backup
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Our Problem Contexts for Dependability

Networks of wireless embedded devices

Low-end 
embedded 

devices

Wearable & 
Mobile

Clusters of 
edge devices

Data Center 
clusters

Autonomous 
systems

• Placed in physically hazardous 
environments

• Little or no OS, little hardware 
support for dependability

• Application software assumes 
root privileges

• Code deeply interconnected 
with peripherals

Problem Context
• Very lightweight 
instrumentation

• Meet soft real‐time 
requirements

Requirements

• Analyze inter‐component 
interactions [Bagchi‐

UsenixSec18, uXOM‐UsenixSec19]

• Emulate binary blob 
firmware [Avatar‐NDSS20, 
Bagchi‐UsenixSec20, P2IM‐
UsenixSec20]

• Time series anomaly 
detection [Rabanser‐NeurIPS19, 
Bagchi‐NeurIPS20]

Application of Data 
Analytics


